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ABSTRACT

The evolution and long-time stability of a double layer (DL) in a discrete auroral arc requires that the parallel

current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of

the U-shaped double layer potential structure. A simple model is presented in which this current redistribution is

effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This

process provides the limiting constraint on the double layer potential. The flank charging may be represented as that

of a nonlinear transmission line. A simplified model circuit, in which the transmission line is represented by a

nonlinear impedance in parallel with a variable resistor, is incorporated in a one-dimensional simulation model to

give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function

of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.

I. INTRODUCTION

A vast body of ground-based, rocket, and satellite observations reveals that auroral-zone acceleration

processes occur in a hierarchy of latitudinal scale widths. On the scale of the inverted-V region (AA > I°) parallel

electric fields are observed in narrow, soliton-like structures interpreted as weak or ion-acoustic double layers

(DL's) (Temerin et al., 1982). Assuming statistical homogeneity of the distribution of these weak DL's over an

altitude range comparable to 1 Re, one infers a total potential drop of up to a few kV, typical of the inverted-V

region. On smaller spatial scales (AA < 0.1 °) more energetic precipitation is observed in discrete arcs, which have

projected widths _ 1 km in the ionosphere. Discrete arcs (DA's) are associated with electrostatic shocks (Torbert

and Mozer, 1978; Kletzing et al., 1983). We adopt the hypothesis that electrostatic shocks constitute the nearly

field-aligned "flanks" of the paradigmatic U-shaped potential structure of a strong double layer. Although this

hypothesis seems plausible, many questions exist concerning the conditions under which DL's may exist in space,
their dynamics, and their structure. These questions are vital for understanding the complex observational morphol-

ogy of fields and particles in the auroral zone. At present, investigations of such questions must to a large extent be

motivated by and proceed from consideration of the fast-growing literature on experiments and simulations,

although usually the applicability of these situations to DL's in space is indirect (Smith, 1985, 1986a).

In this paper, we first discuss theoretically the question of what limits the potential of DL's in auroral arcs,

and report results of recent simulations of DL's in a model circuit. Somewhat more detailed expositions are given by
Smith (1986b, c).
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II. THEORY

Experiments and simulations (Goertz and Joyce, 1975; Coakley and Hershkowitz, 1979) reveal a scaling

law for the DL potential in terms of its length _OLand the electron density neK on the low potential (cathode:K) side;
we write this law as

( -)lqbDe(kV) _- 300 102 cm -3] \ 1 km/ (1)

where £ DL _- d_DL/maxlEIII.In space, _DL is not limited a priori and, absent other constraints, equation (1) implies
that the potential may grow to much larger values than the observed limit on the auroral precipitation energy, which

is a few tens of keV.

This dilemma is resolved by considering how the field-aligned flanks of the arc become charged during the
evolution of the DL's. We adopt as a starting point the basic idea of the recent MHD models discussed by Haerendel

(1983) and Goertz (1985, 1986) in which the DL evolves in the parallel current sheet of a kinetic Alfv6n wave. This
scenario limits the thickness of the sheet a priori to a few times the ion gyroradius at an energy representative of the

distant plasma population in the generator region. Taking this energy to be _ 1 keV, we may estimate Jll by

c _B±

Jll-- neUei- 4"_ R"'_

Using n - 102 cm 3, B0 _ 0.05 G, _B l -- 10 -3 G, and assuming a current sheet of a few kilometers thick, this

equation gives a relative drift velocity Uei greater than the electron thermal velocity Ve. At such a relative drift

velocity, the current sheet is unstable to a variety of instabilities, including the ion cyclotron and Buneman

instabilities. We expect the instability to be triggered at some altitude z. where the density and magnetic field

profiles first combine such that Uei exceeds the threshold drift. In addition, experiments reveal that the U-shaped
structure, with the field-aligned flanks curved toward the low potential side as is required for Earthward-directed

Poynting flux (Smith, 1986a),requires O_e< f_e, where toe and _e are the electron plasma frequency and gyro-
frequency, respectively. This is just the condition for strong magnetization (O_e/Oe = RJM), and is fulfilled in a

limited altitude range along the auroral field lines (Gurnett, 1974).

Simulations show that DL's evolve from current-driven instabilities when the current is interrupted by trap-

ping (Smith, 1982a, b). Trapping creates local regions of macroscopic non-neutrality; in the finite-thickness current

sheet, the plasma tends to expel charge in the transverse direction in an attempt to neutralize the local electric field

(Fig. 1). Electrons are tightly magnetized and cannot be expelled very far, but the ion motion is essentially ballistic
(the evolution time scale is <f_i-'), and ions are accelerated in the transverse direction out to some distance greater

than their gyroradius. Owing to mirror forces, the expelled charge spreads upward, providing the initial charging of
the flanks.

The charging mechanism described above operates in the transient phase. The characteristic time scale of the

evolution is "rDL-- _DL/_t_Z where UiA > Cs the ion inflow velocity in the frame of the DL. The charge spreads along
the flank at velocity c/Vej_, where e± is the dielectric constant. In the MHD limit, el = c2/VA z, but we shall see later
• I.. ,. /- 21"it 2 v'x'_ • T / 1i2
that e / "_- C ! V A in the L,t_ flanK, m any case, however, we find that the time "rind = fdsc/N/e± /c for the charge to
spread along the field lines back to the generator region (Fig. 2) is long compared to TDL ( t < "rind,the spreading
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chargewouldthinoutalongB andtheflankwouldnotsustaintheDLpotential;thentheDLwoulddischarge.This
would occur in a time short comparedwith the typical lifetime of discrete arcs. Therefore,
asymptoticstabilityof theDArequiresatransportmechanismproducingacross-fieldcurrentdensityJx(_b),which
persistsas0_bDL/0t -' 0.

If such a mechanism exists, then in the time-asymptotic regime, the density neK in equation (1) is determined

by current continuity and is of the form

neK(Z*) = neoc -- g f_._dz Jx(qb,z) , (2)

where g is a constant. Substituted in equation (1), equation (2) provides the physical constraint on the DL potential,

which is transparently self-stabilizing for Jx, a monotonically increasing function of _b.

A mechanism to maintain a distributed Jx in the time-asymptotic regime is discussed by Smith (1986b). The

mechanism is based on anomalous transport due to lower hybrid waves which are driven by the inhomogeneous
structure of the flank itself. The discussion above implies that the initial scale length _f of the perpendicular electric

field Ex in the flank is _f > Ri. AS this field is established along B, the electrons acquire the local polarization drift

velocity cEx/Bo. The ions, however, encounter an inhomogeneous electric field over the scale of their gyroradius,

and so their drift orbit is modified by finite-Larmor-radius (FLR) effects. For _f > Ri, the ion drift speed is approxi-

mately given by the first non-vanishing order of the phase-averaged FLR correction:

VDi _ (1 q_4Ri2V2) cEx(._o_ 1 _4__.._f ] B___fRi2_ c_b"
(3)

Then there is a relative drift

Uei _-- VDe-- VDi -- 4 Ri2_f2 C/'_o_ )

if Uei > V_, this relative drift drives the electrostatic modified two-stream instability (MTSI) studied by McBride et

al. (1972). (Other instabilities are also possible, of course, but for simplicity we consider only the MTSI.) The most

unstable mode has frequency to _ toLH = toi/( 1 + toe2/12e2)1/2,with growth rate ",/_ toLH, and parallel wave number kll

(m/M) I/2 k±.

The salient property of the MTSI for our purposes is that it saturates by trapping ions in the perpendicular
drift direction and electrons in the parallel direction; in the saturation process, the ions and electrons are heated to a

fraction ot2 of the relative drift energy:

T l_i _" Tlle "- ot2MUei2/2 .

From simulations, McBride et al. (1972) find ot = 0.5, with a wave energy density W at saturation of

W/nMUei 2 - a few percent.
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Motivatedbytheseresults,Smith(1986b)postulatesaself-scalingmodelinwhichtheflankisassumedtobe
alwaysatsaturation(marginalinstability)withrespecttoaninstabilitysuchastheMTSI.Themodelcharacterizes
theinstabilityby twoparameters(x,13, defined by

Vii = o_(cE×/Bo) ; Uei = 13(cEx/Bo) , (4)

where Uei is now the threshold drift speed and Ex _ +/£f. Using equations (3) and (4), we find the self-similar

scalings

Ri2/_f 2 = 0_[3 ; T.l.i/Teo = (ce313) 1/2 (e(bDL/Teo) ;

WDe -- cEx= B"_---_k'_"l/' 13'_1/4 (" m"_l/2_k"M-J (eqbDL) I/2"_ ' (_)1/4 ("_') I/2 {_e0 _\_Qeo] ("_eo')eqbDL 1/2, (5)

where _eo, Teo, and COeoare reference values of the electron Debye length, temperature, and plasma frequency.

Owing to momentum conservation, there is a wave-modulated friction between the electrons and ions,

which may be described by an anomalous collision frequency (Davidson and Krall, 1977) v, "-- _o_Ltt, where e =

W/nMU_i 2. Thus, the electron and ion fluids are acted on by volume forces Fy i = -Fye, leading to an F x B drift

velocity in the x-direction, i.e., opposite to Ex (the coordinate system is defined by Fig. 3). This drift velocity is
given by Vx_ = Vxi ------Vx (ne,+DL), where

V x = E (0£3135)1/4 _kfifl(m_l/2"_i _'_eo)O)LH e+DL 1/2 Veo , (6)

and Veo = (Teo/m) I/2. Thus, above the DL, plasma is transported from the center of the arc to the flanks, concentrat-

ing the parallel current there (Fig. 3). Although Vxe = Vxi, there is a net current Jx because above the region of

strong Ell in the DL, we expect an extended region of small charge density p which sustains a weak parallel density
field Eli driven by beam-plasma instabilities. Then the continuity equation is

OJz/OZ = - OJx/OX _ - O(pVx)/O×

Upon solving and integrating along the field line, we obtain (Smith, 1986b)

J_(_)- Jz(0) = C(oL,13) (+DL/_a2) 5/8 (7)

where C(cx,13) is a constant and _'a is the perpendicular scale length of the arc (Fig. 3). The RHS of equation (7) is just

the term J" Jxdz in equation (2). Assuming Jz(0) << Jd°°), equation (7) gives a scaling law
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_DL_ (Jz(°°)/c)8/5£a2 (8)

Fortypicalauroral-zoneparametersequation(8)yieldsI_)DL _ 10 kV for _a _ 1 km, in general accord with observa-
tions.

III. SIMULATION

In the context of the above discussion, the flank may be modeled as a transmission line with local potential _b
= Ex£f, where £e _ +,/2. Once the DL potential has reached a threshold value + ,required to drive the MTSI, the

transmission line is charged by the distributed (in z) perpendicular current Jx = pVx of equation (7). We shall report

elsewhere on simulations in which the transmission-line equations (Smith, 1986c) are solved simultaneously with a

one-dimensional simulation of the DL evolution; this procedure provides the necessary self-consistent boundary

condition on the current density JDL(t) at the simulation boundaries. In this paper, we replace the transmission line
with a simple model circuit.

If the flank were uniform between the DL (z = z, = 0) and the generator, the transmission line would appear
to the DL as a pure impedance over the evolution time of the DL, with value ZT = (Lr/CT)'/2, where l-.x = _f/4"rrc2,

CT = 4_re±/_f. We model the impedance by the same form, with variable _f(_b). We thus adopt the model circuit

shown in Figure 4 where the diode symbol represents the DL and the variable resistor R(_b) represents leakage
current in the flank; this term is modeled by using the same form for Jx as derived above, but over the perpen-

dicular scale length _f instead of _a, by integrating Jx _ n_/2(z) over the length ZK(t) = ct/X/e I . The dielectric
constant is defined by

t.! - = 1 -F- (OJeo2/_'_e 2) "F (£0io2/_-_i 2) [(I--oil3) 2 + 0(2(1 +_/e)] , (9)

where _/e ------Tlle/T/i.

The heuristic definition [equation (9)] is such that the total energy stored in the dielectric is el Ex2/8ar: the
first term in [] represents the reduced ion drift speed, while the second term accounts for ion and electron heating by
saturation of the self-scaled modified two-stream instability.

For the purpose of testing the scaling of 6DL with _a and et, we adopt the philosophy that owing to the
separation between the perpendicular scale lengths _a and _f, the flank may be represented by these circuit elements

while the DL will evolve in an essentially one-dimensional fashion in the central region of the arc. The DL evolution

is simulated with the one-dimensional Vlasov code described by Smith (1982b), replacing the circuit used there by
that of Figure 4. The boundary condition on the current density JDL(t) is then given by

_ Is qbDL(t) [_T1 1 ]JDL(t) _a _a (6DL) -4- R(qbDL)_ J (10)

where Is is the constant source current and

ZT = [Ot/[3]TM (Y/_i 1/2) (Veo/C) (J_a/_l, I/2) _)DL 1/2 , (1 I)
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Teo._l/2 (Y£a) 2/3 6DL TMR = _- _-TUi)'(_ [l-exp(-K2ZK(t))/2]
(12)

la, = m/M, K2 is defined in Smith (1986b) Y = O_eo/lIeo, Veo = OJeoheo, and all lengths and time scales are norma-
lized to the nominal upstream quantities h_o and tOeo, respectively; also doOL_ edoDe/T_o. The term in [] in equation

(10) replaces the physically derived Ix of equation (8). This term is valid only after the threshold potential dO. has

been attained, and so is turned on adiabatically for dO> dO,. Therefore, the circuit model does not accurately

describe the initial dynamics in the linear instability phase of the evolution. In addition, the lumped circuit of Figure

4 cannot represent the distributed nature of the flank charging, and so we cannot construct a circuit topology that
allows for inductive fields. Therefore, we cannot model the acceleration of the inflowing (injected) distributions by
inductive effects.

For the parameters we use (see below), we estimate that the effect of neglecting inductive effects is small. As

for the first limitation, the transient charging mechanism vanishes as 0dOOL/Ot-+0. Thus, we expect the model to be

adequate for our present objective of studying time-asymptotic scalings.

We show results for five runs. For all cases, the injected distributions are drifting Maxwellians with drift

speeds in the simulation frame of Ue = 2 Veo, Ui = -0.5 Veo- The forms of these distributions are held fixed (up to

normalization). The threshold drift parameter 13is held equal to 2, and M/m = 16. Holding _a/h_ = 60, we use
values of a = 0.05, 0.02, 0.50. Fixing a = 0.50, we use J_a/he = 20, 40, 60. Initialization and other im-

plementations are as described by Smith (1982b).

Figure 5 shows the scaling of dODLwith a, the fundamental parameter of the self-scaling marginal stability

model of the MTSI discussed earlier. In the circuit equation (10), the principal effect of ot is contained in the depen-

ence of the impedance ZT on the dielectric constant _±. In terms of the circuit equation (10), the DL scaling law
equation (1) becomes in dimensionless notation

dODL1/2 dODLTM ]dODL = G_DL2Js 1 _oJs _ '
(13)

where ZT(dO) = ZodO1/2, R(dO) = RodO TM. The RHS (13) has the form of a large factor GJs _DL 2 times a small factor

[... ], and the upper bound for doDLis obtained from setting [... ] = 0. Because Zo < < Ro, equation (13) implies doDL

Zo2. In Figure 5 we also plot the dependence of Zo2 on et, which agrees well with the plotted points.

Figure 6 confirms the scaling doDL -- _a 2 found above. Again, this result is contained in equation (13) through

the dependence doDL_ Zo2 (the results of Fig. 6 are all for ot = 0.5, where Zo << Ro).

Because the speed of light c is introduced in the impedance, the choice of V¢o/C yields a physical scaling of

velocities. Because Y = t%o/[1¢o is a parameter, we obtain physical values of the length scales for an assumed value
of either Bo or n¢o. All runs discussed here are for Teo = Tio = 1 keV, typical of the plasma sheet population (note

dODLscales independently of T¢o). The scaled dODLis then given in kV as shown in the right-hand scale of Figure 6.

Similarly, if we adopt a nominal value of Bo = 0.05 G (fc_ = 250 kHz) for the acceleration region, the top scale of

Figure 6 gives arc thickness projected into the ionosphere of the order 1 km, which is the correct order of magnitude.
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Thepowerflows(kb)throughthevariouspartsof thecircuitareshownforonecaseinFigure7;forthiscase
_bDL= 42.5kV. In thesteadystate,only10percentof thepowerflowsgoesthroughtheDL, andabout90percent
goesintochargingtheflanks.Thephysicalscaleontherightshowsthepowerdissipatedper1000kmextentof the
arcin theE-Wdirection.Arcsaregenerallyobservedinsystemsof parallelbands,quasi-periodicin theN-Sdirec-
tion;for theparametersofthisexample,eachDA insuchasystemwoulddissipateabout10I1W,comparedwitha
typicalsubstormpowerof -- 1012 W.

The scalings in ct and J_a have straightforward physical intepretations. The increase of _bDL with et has two

related aspects. First, the efficacy of the anomalous transport mechanism reported in Smith (1986b) increases with

o_, which is a measure of the strength of the MTSI. Second, in this self-scaling model the ratio Ri(_b)/£f(_b) _ (XI/2, SO

that as ot increases, finite-Larmor radius effects lead to decreasing ion drift speed; hence, a higher ratio of electro-

static to kinetic energy is stored in the flank "dielectric" for a given charge. The factor _a in Zo [equation (6)]

originates in the current balance (Is = Js %), and because the flank is charged from the interior of the arc the charge
available increases with £a- The quadratic scaling (DDL _ _a 2 derives from the self-scaling of the transport model

because _f _ (I) I/2.

IV. DISCUSSION

We have shown that basic considerations of DL evolution and stability require anomalous transport

processes to divert the uniform upstream current to the flanks of a DA even after the parallel electric field has

evolved to a steady state. The transport model we have discussed, albeit highly simplified, yields an estimate [equa-

tion (8)] for the arc potential in general accord with observations. Other important consequences of the model are

also in accord with satellite and rocket observations of DA's and laboratory DL experiments. These include: (1) the

density in a DA is substantially depleted relative to the ambient density (Benson and Calvert, 1979; Alport et al.,

1986); and (2) concomitant with the depletion of the arc is that the current is diverted to the flanks, so that the highest
current density is at the edges (Bruning, 1983; Burke, 1984).

Besides the simple transport mechanism discussed here, there are many other mechanisms which are prob-
ably important in DA's. We are presently investigating models including ion-cyclotron modes.

In terms of the simple circuit model, the potentials, perpendicular length scales, and power flows physically

scale to correct orders of magnitude. For the nominal parameters we have chosen, the potential ranges from 5 to 42

kV, while the length scales are consistent with the observational bound of -_3 km on the latitudinal scale projected

in the ionosphere (Boehm and Mozer, 1981). These quantities scale as neo and r_o-1/2, respectively. We adopted Bo
= 0.05 to correspond to the frequency of peak intensity of the auroral kilometric radiation, and chose t%o/f_eo as the

marginal limit of strong magnetization (toJl)_ = RflX_), which experiments reveal to be a requisite for strong DL
formation with Earthward-directed Poynting flux (Smith, 1986a). (Recall that n_o is the ambient density before DL

formation, not that of the evacuated arc.) Thus, our choice of O_o = _o is an upper bound; smaller values lead to
lower potential, larger widths, and lower power flows.

In future publications we shall report on refinements and extensions of the simulation concept, including a

model in which the simplified circuit used here is replaced by the transmission-line equations.
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Figure 1. Schematic illustration of initial charging of the DL flanks by expulsion of charge from the localized,

rapidly changing non-neutral region (shaded: stippled region p > 0, cross-hatched p < 0) where onset of current-
driven instabilities occurs in the parallel sheet of a kinetic Alfv6n wave.
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IONOSPHERE

B
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DRIVING SOURCE

Figure 2. Schematic of the double layer flank spreading along B from the double layer toward the generator (here

for illustration taken to be in the plasma sheet).
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Figure 3. Left side: Schematic of the current diversion in the discrete arc. Right side: Definition of the scale lengths
of the arc (_a) and flank (_f) and the associated scale factors which are used in the text to replace perpendicular

derivatives. Also shown is a sketch of the inhomogeneous electric field Ex, which produces relative drift between

the electrons and ions owing to finite-Larmor-radius effects, and the definition of the xyz coordinate system. The

magnetic field Bo = -Boez.
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Figure 4. Model circuit used to provide the current density boundary condition in one-dimensional DL simulation.
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Figure 6. Scaling of t_)DL with the perpendicular scale width _a of the arc model. The bottom and left scales are

dimensionless. The right scale shows the potential in kV for assumed Teo = 1 keV; the top scale shows the arc

dimension (2£a) projected into the ionosphere, for the given ambient parameters (before DL formation).
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Figure 7. Time history of power flows through the various circuit elements for run 8606 (e6DL/Teo = 42.5). TL -

transmission line (flank) impedance; DL - double layer; AR - anomalous resistivity (leakage) in flank. The right-

hand scale shows the physically scaled power for an arc extended 1000 km in the E-W direction.
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